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A  reliable  procedure  for  the  identification  and  quantification  of  the  adulteration  of  olive  oils  in  terms
of  blending  with  other  vegetable  oils  (sunflower,  corn,  seeds,  sesame  and  soya)  has  been  developed.
From  the  analytical  viewpoint,  the  whole  procedure  relies  only  on  the  results  of  the  determination  of
the  triacylglycerol  profile  of the  oils  by  high  temperature  gas  chromatography–mass  spectrometry.  The
chromatographic  profiles  were  pre-treated  (baseline  correction,  peak  alignment  using  iCoshift  algorithm
and mean  centering)  before  building  the  models.  At  first,  a class-modeling  approach,  Soft  Independent
Modeling  of Class  Analogy  (SIMCA)  was  used  to  identify  the vegetable  oil  used  blending.  Successively,
a  separate  calibration  model  for each  kind of  blending  was  built  using  Partial  Least  Square  (PLS).  The
enetic algorithm
LS
C–MS

correlation  coefficients  of  actual  versus  predicted  concentrations  resulting  from  multivariate  calibration
models  were  between  0.95  and  0.99.  In  addition,  Genetic  algorithms  (GA–PLS),  were  used,  as  variable
selection  method,  to improve  the models  which  yielded  R2 values  higher  than  0.90  for  calibration  set.
This  model  had  a better  predictive  ability  than  the  PLS  without  feature  selection.  The  results  obtained
showed  the  potential  of  this  method  and  allowed  quantification  of  blends  of olive oil  in  the  vegetable  oils
tested  containing  at least  10%  of  olive  oil.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Edible vegetable oils are a valuable component of a fully mature
eed. They are mainly the mixtures of triacylglycerols (TAGs), with
ifferent concentration levels. The remaining nonglyceridic frac-
ion consists of different compound classes such as hydrocarbons,
ocopherols, phytosterols and sterol esters [1].  The vegetable seed
r fruit from which the oil is extracted determine most of its char-
cteristics and composition that also depends on several factors
uch as soil, climate, processing, harvesting and chemical process
ccurring during storage [2].

Among edible oils, olive oil (OO) shows important and outstand-
ng characteristics due to its differentiated sensorial qualities (taste
nd flavor) and higher nutritional value which have been acknowl-
dged internationally. Several health benefits associated with its

onsumption were initially observed among Mediterranean peo-
le and its dietary consumption is nowadays considered to provide
any benefits to human health [3].

� This paper belongs to the Special Issue Chemometrics in Chromatography, Edited
y Pedro Araujo and Bjørn Grung.
∗ Corresponding author. Tel.: +34 958240797; fax: +34 958243328.

E-mail address: crsamblas@ugr.es (C. Ruiz-Samblás).

570-0232/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jchromb.2012.01.026
TAGs represent up to 95–98% (weight to weight – w/w) of veg-
etable oil composition and show a characteristic distribution. As a
consequence, the addition of other edible vegetable oils to olive oils
modifies TAG distribution and because of that, they are considered
to be good fingerprints for adulteration detection purposes [4].

Companies have been taking advantage of selling OO blends at
the same price as pure OO, obtaining important economic benefits.
The adulterants used in blends are the ones with similar physical
and chemical properties and usually they are cheaper and easy to
obtain. In the case of OO this usually implies the dilution with less
expensive oils or other inferior quality olive oils [5,6]. Moreover,
a lot of methods and limits were introduced into the International
Olive Oil Council (IOOC) trade standard, into EC Regulation 2568/91
and into the Codex Alimentarius Standard for controlling prod-
uct authenticity and quality. In addition, In the EU, requirements
has being established in Regulation (EC) No. 29/2012, concerning
commercialization and labeling of products which contain olive oil,
blends of olive and other edible vegetable oils. The presence of olive
oil higher than 50% has to be indicated on the label, but if the per-
centage is lower than 50% the name of olive oil cannot be used in

the label [7].

However, the reasons for mixing olive oil with others are not
only economical, but also nutritional. It is clear from the composi-
tion of vegetable oils, that no single oil, even olive oil, meet all the

dx.doi.org/10.1016/j.jchromb.2012.01.026
http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:crsamblas@ugr.es
dx.doi.org/10.1016/j.jchromb.2012.01.026
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Fig. 1. Calibration Building Blocks with the percentage of each kind of olive oil and
2 C. Ruiz-Samblás et al. / J. C

il nutritional requirements of essential fatty acids and vitamins
8].

The interest of researchers in the authentication of vegetable
ils has led to an improvement in the control of adulteration and to
he development of analytical methods to establish compositional
ifferences in olive oils blends [9].  An extensive literature, dis-
ussing the suitability of a wide assortment of analytical methods
imed at evaluating the authenticity and the presence of adulter-
nts in OO, has been published [10,11]. When such methods are
pplied in conjunction of chemometric tools, spectroscopic analyt-
cal techniques as NIR, MIR, Raman, NMR  or MS,  and sensor-based
nalytical techniques as electronic nose, have been frequently
sed. This techniques share as common feature that yield low-
elective instrumental signals (instrumental fingerprints) which
re very suitable for developing valid chemometric models for
attern recognition. However, there are not many studies about
egetable oils authentication, which use directly the raw ana-
ytical signal which come from the chromatographic instrument
chromatographic fingerprint) with multivariate statistical meth-
ds [12,13]. In most cases, the chromatographic applications use
erived information from the raw analytical signal provided by
he instrument, such as peak areas or concentration profiles for
he classification of edible vegetable oils and detection of their
dulterations. Chemometric tools have been commonly applied
or matching and discrimination, classification and prediction in
ssessing authenticity of vegetable oils [14–16].  Thus, GC and LC
ethods in combination with multivariate statistical techniques

uch as principal component analysis (PCA), discriminant analysis
DA), cluster analysis (CA), K-nearest neighbor, genetic algorithm
GA), partial least squares (PLS) [17] and artificial neural networks
ANN) have been applied successfully to classify and discriminate
he oils [18,19].

The official method of the International Olive Council (IOC)
s based on the use of the reverse phase-liquid chromatogra-
hy with a refractive index detector (HPLC-RID), to establish the
ifference between actual and theoretical content of TAGs with
quivalent Carbon Number 42 (ECN42) [20]. In the literature, the
ontribution in chromatography to the authentication of vegetable
ils by quantifying different major and minor compounds have
een reviewed by Aparicio and Aparicio-Ruiz [21]. Detection of
dulterated oils based on TAG compositions by high temperature-
as chromatography (HT)-GC was studied previously by Park and
ee [1].

This study focuses on the quantification of olive oil in blends
ith vegetable oils using multivariate calibration. The TAGs pro-
les, measured by HTGC–MS systems, have been applied for the
uantification of olive oils in blends with vegetable oils (sunflower,
orn, seeds, sesame and soya) and considering the different cate-
ories of olive oil (extra virgin olive oil, virgin, olive oil and pomace)
nd varieties (picual, hojiblanca and arbequina) at several percent-
ges (10–90%). Multivariate statistical analyses, such as SIMCA, PLS
nd GA–PLS were applied to achieve this purpose.

. Materials and methods

.1. Samples

The olive oil samples, to build the blends, were fourteen, includ-
ng four categories [22]: extra virgin (EVOO), virgin (VOO), olive oil
OO, blend of virgin and refined) and pomace oil (POO), and three
panish olive fruit varieties named “arbequina” (ARB), “hojiblanca”

HOJ) and “picual” (PIC).

In addition, eleven vegetable oils samples were used: two
unflowers oils (SUN), one high-oleic sunflower oil (OSUN), two
orn oils (COR), one sesame oil (SES), three soya oils (SOY), and
each vegetable oil in the blends for the training set (Note: acronym VRG includes
the three categories, extra virgin (EVOO), virgin (VOO) and olive oil (OO), which is a
blend of virgin and refined olive oil.).

two vegetable seeds oils (SEE), where the label did not specified
what kind of seeds were used.

All the vegetable oils samples were purchased in Spain and
France and were stored in dark bottles, at −4 ◦C until their analysis.

A pure sample of each edible vegetable oil was also analyzed.
Seventy-eight blend samples were prepared by mixing one olive oil
with one vegetable oil in different percentages obtaining five dif-
ferent levels of concentration from 10 to 90% (w/w). The prepared
blends were used as calibration or prediction samples, as needed
and they covered all the possible combinations of vegetable oils
with the different categories and varieties of olive oils The Calibra-
tion Building Block, for the training set of samples, is shown in Fig. 1.
This methodology of preparation was followed in order to cover all
the possibilities of blending and to avoid any lack of information.
Table 1 shows, more specifically, the composition of each blend
which were used as calibration set.

For analysis, olive oil was dissolved in chloroform (99%, reagent
grade) to a final concentration of 0.2% (w/w). The diluted olive
oil sample was  directly injected into the system, without any
preliminary chemical derivatization or purification step prior to
chromatographic analysis.

2.2. Chromatographic conditions

All separations were performed with a VARIAN GC 3800 gas
chromatograph (PA, USA) equipped with a split/splitless injec-
tor coupled to a VARIAN 4000 ion trap mass spectrometer (PA,
USA) equipped with an electron impact source. A split injec-
tion with a ratio of 1:50 was  used. The samples were introduced
using a robotized autosampler module (Combipal, CTC ANALYTICS,
Switzerland). Scan control, data acquisition, and processing were
performed by a MS  Workstation software (VARIAN, PA, USA) data
system. The sample volume injected was 2 �L.
A capillary column coated with 65% diphenyl-35%
dimethylpolysiloxane stationary phase (Restek Rtx-65TG;
30 m × 0.32 mm i.d. × 0.1 �m;  maximum temperature 370 ◦C;
Restek Corp., Bellefonte, PA, USA) was  used. The GC oven
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Table  1
Percentage of the olive oil and vegetable oil in the oil blend samples for the calibra-
tion  set.

Sample Composition Sample Composition

1 POO 10% + SUN 90% 32 ARB 90% + SEE 10%
2 POO 50% + SUN 50% 33 HOJ 30% + SEE 70%
3  POO 90% + SUN 10% 34 HOJ 70% + SEE 30%
4  EVOO 30% + SUN 70% 35 PIC 10% + SEE 90%
5  ARB 50% + SUN 50% 36 PIC 50% + SEE 50%
6  ARB 90% + SUN 10% 37 PIC 90% + SEE 10%
7 HOJ 30% + SUN 70% 38 POO 10% + SES 90%
8 HOJ 70% + SUN 30% 39 POO 50% + SES 50%
9  PIC 10% + SUN 90% 40 POO 90% + SES 10%

10 PIC 50% + SUN 50% 41 EVOO 30% + SES 70%
11  PIC 90% + SUN 10% 42 VOO 70% + SES 30%
12 EVOO 70% + SUN 30% 43 ARB 10% + SES 90%
13 POO 30% + COR 70% 44 ARB 50% + SES 50%
14 POO 70% + COR 30% 45 ARB 90% + SES 10%
15 EVOO 10% + COR 90% 46 HOJ 30% + SES 70%
16 VOO 50% + COR 50% 47 HOJ 70% + SES 30%
17 EVOO 90% + COR 10% 48 PIC 10% + SES 90%
18  ARB 30% + COR 70% 49 PIC 50% + SES 50%
19  ARB 70% + COR 30% 50 PIC 90% + SES 10%
20  HOJ 10% + COR 90% 51 POO 30% + SOY 70%
21  HOJ 50% + COR 50% 52 POO 70% + SOY 30%
22 HOJ 90% + COR 10% 53 EVOO 10% + SOY 90%
23  PIC 30% + COR 70% 54 VOO 50% + SOY 50%
24 PIC 70% + COR 30% 55 EVOO 90% + SOY 10%
25  POO 10% + SEE 90% 56 ARB 30% + SOY 70%
26 POO 50% + SEE 50% 57 ARB 70% + SOY 30%
27 POO90% + SEE 10% 58 HOJ 10% + SOY 90%
28 VOO 30% + SEE 70% 59 HOJ 50% + SOY 50%
29 EVOO 70% + SEE 30% 60 HOJ 90% + SOY 10%
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30 ARB 10% + SEE 90% 61 PIC 30% + SOY 70%
31 ARB 50% + SEE 50% 62 PIC 70% + SOY 30%

emperature was programmed from 315 to 350 ◦C at 1 ◦C/min. The
njection port was held isothermally at 370 ◦C. Helium (99.995%)

as used as the carrier gas and its flow rate was  1.5 mL/min. The
ass spectrometric conditions were as follows. The ion source

emperature was held at 250 ◦C during the GC/MS runs [23].
The transfer-line temperature was maintained at 350 ◦C

hroughout the analyses. The electron energy was 70 eV and the
mission current 10 �A. Chromatograms were recorded in full-scan
ode. Average spectra were acquired in the m/z range of 200–1000
/z and were recorded at a scan speed of 1.20 s. Scan control, data

cquisition, and processing were performed by a MS  Workstation
oftware (VARIAN, PA, USA) data system.

.3. Chemometrics

The analytical data were arranged in two matrixes to perform
he statistical analysis. The calibration data set (62 samples) was

ade of as many rows as samples analysed and as many columns
1724 elements) as the entire chromatogram data points recorded
uring the acquisition time. Obviously, the signal maxima are the
eights from the different chromatographic peaks. The validation
et was composed of 16 samples.

All chemometric treatments were performed by using the PLS
oolbox (Eigenvector Research Inc., Wenatchee, WA), for Matlab®

oftware (Mathworks Inc., Natick, MA,  USA).

.3.1. Pre-processing of the data
Preprocessing is, in general, the ensemble of mathematical

reatments performed on the data before the model building step.
im of preprocessing is to make the data suitable for statistical anal-

sis, by removing the extraneous sources of variation (variance)
hich are not related to the information sought. These sources of

ariance can increase the difficulty in modeling. Interfering vari-
nce appears in almost all real data because of systematic errors
togr. B 910 (2012) 71– 77 73

present in experiments. This unwanted variance will require the
model to work harder to isolate the variance of interest from the
interfering one. Because of this the whole data set of samples was
preprocessed before building any model [24].

First of all, a baseline correction algorithm (Penalized Asymmet-
ric Least Squares) was  applied for automatically removing baseline
contributions from the data. It subtracts a baseline from a chro-
matogram (or a signal in general) using an iterative asymmetric
least squares procedure. Points with residuals <0 are up-weighted
at each iteration of the least squares fitting. This results in a robust
“non-negative” residual fit when residuals of significant ampli-
tude (e.g. signals on a background) are present [25]. Secondly,
after baseline correction, peak shifting was  corrected with inter-
val correlation optimized shifting, iCoshift [26], which splits the
chromatogram into intervals and “coshifts” each vector to get the
maximum correlation toward a target signal in that interval (when
no reference chromatogram is available, average or maximum sig-
nals can be used).

Finally, the chromatograms were mean centered by subtracting
from each signal the mean chromatogram, in order to remove the
variability related to this overall offset term.

2.3.2. Soft Independent Modeling of Class Analogies (SIMCA)
Firstly, a class-modeling approach using SIMCA was applied to

identify the nature of blending. In class-modeling, a separate model
space is built for each of the investigated categories: samples falling
within the model space are accepted by that category, while sam-
ples falling outside are considered as outliers for the specific class
[27]. In particular, SIMCA describes the similarities among the sam-
ples of a category using a principal component approach, so that
the distance from the class models is a combination of the distance
within the PC space (T2 or leverage) and the residuals (Q). Accord-
ingly, class space is defined by imposing a threshold to this distance
value: samples for which the distance to the model is less than the
threshold are accepted, while others are rejected as outliers. The
optimal number of PC for each category has to be optimized during
the calibration phase. In this study, a separate model for each cat-
egory of blend (different categories and varieties of olive oils with
SUN, COR, SEE, SES and SOY) was  built.

2.3.3. Partial Least Square (PLS)
Once the nature of blending was established by SIMCA clas-

sification, quantification of the percentage of OO was  carried out
by building separate calibration models for each kind of blending.
PLS was  used to build the regression models relating the chro-
matographic profiles to the quantity of OO. PLS is a well-known
bilinear multivariate method for building regression models when
the number of variables exceeds the number of samples and/or
when the variables themselves are highly correlated. PLS modeling
includes the dependent and independent variables in the data com-
pression and decomposition operations, i.e. both y and x data are
actively used in the data analysis. In particular, data points are pro-
jected onto a subspace whose axes have maximum covariance with
the dependent vector. The optimum dimensionality of this sub-
space, i.e. the optimum number of latent vectors used to describe
the data should be selected during the training phase: choice of
the proper dimensionality is crucial as including too few compo-
nents can result in poor modeling ability while overfitting can occur
when too many latent vectors are retained. Because the model has
to be used for the prediction of new samples, all possible sources of
variation that can be encountered later should be included in the
training set. Usually, a second independent set of samples (valida-

tion or test set) has to be used to check the generalization ability of
the optimized model and to compute an error score for prediction.

In order to predict the percentage of the different OOs in the
blends with other vegetable oils, a specific PLS model was prepared
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Fig. 2. GC–MS chromatograms of vegetable oil blends samples (all type of oils

or each class of vegetable oil. Due to the limited amount of train-
ng samples, the optimal complexity of the PLS models was  chosen
n the basis of the minimum error in leave-one-out cross valida-
ion, a procedure where each sample is in turn removed from the
alibration set, the model is constructed using the remaining n − 1
amples and used to predict the y value for the sample left out. This
rocess is repeated n times, until each one of n calibration samples
as been left out once. In a successive stage, a PLS model for all the
lends together was built for the sake of comparison. In this case,
election of the optimal complexity was made based on a seven-
old cross-validation procedure: training data were divided into 7
ancellation groups and in turn each of them was used as internal
alidation set. All models were also externally validated with a set
f 16 samples which were not used to build the calibration model.
.3.4. Variable selection: genetic algorithm (GA)
The selection of variables for multivariate calibration can be con-

idered an optimization problem. GA is an optimization method

Fig. 3. SIMCA modeling. Projection of the samples (cross-validati
zed in the study) before peak shifting pretreatment (iCoshift) (a) and after (b).

based on the principles of genetics and natural selection in the the-
ory of evolution. The algorithm starts with a randomly selected
population. Each individual of the population, represented by a
chromosome of binary values, represents a subset of descriptors.
The number of the genes at each chromosome is equal to the
number of the descriptors. A gene is given the value of one, if its
corresponding descriptor is included in the subset; otherwise, it is
given the value of zero. Each chromosome is evaluated for its per-
formance through an objective function called fitness function. A
high fitness value of a chromosome corresponds to a higher chance
to be selected for the next generation. Then the genetic information
is exchanged between chromosomes by crossover and perturbed by
mutation. The result is a new generation with better fitness. This
process is repeated until the stopping criterion is reached [28].
GA–PLS is a sophisticated hybrid approach that combines GA as
a powerful multivariate variable selection with PLS as calibration
method [29]. In GA–PLS, the chromosome is corresponding to a set
of variables, to be used as inputs for the PLS regression model. The

on results) onto the T2/Q model space of soybean category.
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ig. 4. Predicted percentage of olive oil in the different vegetable oil blends (a) oliv
il  and (e) olive oil–soya oil. See Fig. 1 for more detail of composition. See Table 1 fo

oupling of GA with PLS has been successfully applied to many spec-
ral data sets and have been shown to provide better results than
ull-spectrum approaches [30]. GA–PLS analysis has been carried
ut using Leardi’s Genetic Algorithm Toolbox freely available on
nternet [31]. The GA–PLS approach was adopted both for the veg-
table oil-specific calibration and for building a regression model
or all the blends together.

. Results and discussion

Fig. 2 shows the baseline corrected chromatograms of the whole
ata set before and after iCoshift. By inspecting the figure, one can
ee the large difference between the two plots and how the peak
hifting was perfectly corrected with this algorithm. In a first stage,
Coshift was applied separately to the different kinds of blends and
uccessively to the whole data set with all the samples of blends
ogether.

The first 500 data points of each chromatogram were eliminated
ue to the lack of information. As described in the previous section,

dentification and quantification of the oil blends was  carried out in
wo successive stages: at first, a classification approach was used
o identify the vegetable oil used for blending and then separate
alibration models were built for each of the different blends. In

articular, classification of the oil samples according to vegetable
il used for blending was carried out using a modeling approach
ased on the SIMCA algorithm. Accordingly, 5 independent models,
ne for each of the investigated categories (OO blending with SUN,
sunflower olive oil, (b) olive oil–corn oil, (c) olive oil–seed oil, (d) olive oil–sesame
calibration parameters of the models.

COR, SEE, SES and SOY) were built on mean centered data. Leave-
one-out cross-validation was used to assess the model complexity
and 2 principal components were selected for all the category mod-
els, corresponding to an explained variance of more than 94.5% for
each class.

It must be stressed that none of the training samples was  iden-
tified as outlying for all the category models. Moreover, all samples
are nearest to their respective class, so there was no misclassifi-
cation either in modeling or in cross-validation. When considering
the other figures of merit, it was  observed that sensitivity (percent-
age of samples from the modeled category that are accepted by the
class model) and the specificity (the percentage of samples from
other categories which are rejected by the class model) [27], were
both 100% for all the five classes. These results can be observed in
Fig. 3, where the projection of the samples onto the model of soy-
bean category (chosen as example) is reported. It can be observed
that all the samples belonging to the modeled class (in this case,
soybean) lie within the model space delimited by the threshold,
while all the samples from other origins are recognized as outlier
by the category model, so that sensitivity and specificity are 100%,
as already mentioned.

The next step, in order to quantify the percentage of OO in the
blends, was to build separate multivariate calibration models by the

PLS algorithm, using the chromatographic data of the training set
in order to observe how each class behaved. Because of this, a spe-
cific PLS model was  prepared for each kind of blend of vegetable
oil (olive oil–sunflower olive oil, olive oil–corn oil, olive oil–seed
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Table 2
Calibration parameters and statistical data of the PLS calibration models for the individual classes.

LVs R2 RMSEC RMSECV CV Bias

OO–SUN 6 0.999478 0.00641991 0.0895547 −0.0149237
OO–COR 2 0.955166 0.0573394 0.0960388 0.00643143
OO–SEE 6 0.999075 0.00892755 0.0625305 −0.00335554
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input for the final PLS model (in this case autoscaling was chosen
as pretreatment).
OO–SES 6 0.998651 

OO–SOY 2 0.980184 

il, olive oil–sesame oil and olive oil–soya oil). The performance
f models was evaluated in terms of the root mean squared error
f calibration/prediction (RMSEC/P) and of the determination coef-
cient R2. Leave-one-out cross validation was used to choose the
ptimal model complexity.

Fig. 4 shows the plot of predicted versus actual concentrations
f olive oil in the vegetable oil blends. Mean centering chromato-
raphic pretreatment was used in all the calibration models. These
odels were built previously for each vegetable oil blend in order

o see the behavior of each model by itself. Table 2 shows the statis-
ical results obtained for the calibration step, including statistical
arameters such us PLS factors, RMSECV and R2. As it is shown, the
orrelation coefficients of actual versus predicted concentrations
esulting from multivariate calibration models for the different oils
ere between 0.95 and 0.99. The model of the blend of olive oil

nd sunflower oil had the highest R2 (0.9995) and all of them have
 RMSECV < 0.1; the model of olive oil and corn oil had the lowest
2 (0.9552). According to these criteria all types of vegetable oils
ould be quantified with excellent results. The optimum number of
actors was selected in order to avoid overfitting when using PLS.

In order to evaluate the performances of the proposed approach,
nvolving a first classification of unknown samples and later the
pplication of the PLS model built on the samples of the nearest
lass, a further external validation stage was carried out. For this
urpose, 16 test samples consisting in blends of olive oil with 4 of
he 5 analyzed vegetable oils (sunflower, corn, seeds and soybean)
n different proportions, were processed by SIMCA and PLS. SIMCA

odel was able to correct assign all the validation samples to the
lass corresponding to their true origin. Then, for each sample, the
LS model corresponding to its predicted category was used for
uantification and an RMSEP lower than 0.1 was obtained, thus
onfirming the validity of the proposed approach also for external
amples.

However, there can be cases -for instance when blends are pro-
uced mixing EVO with more than one kind of other vegetable oils,
r when an oil from a category not considered in this study is used

 where a sample is recognized as outlier by all the class models in
he preliminary SIMCA step. In those cases, none of the individual
LS models could be perfectly suitable for quantifying the blending
atio, or in general assessing EVO purity.

To overcome these drawbacks, based on the promising results
f the modeling performed on each category separately, in a further
tage the possibility of building an overall model, able to quantify
he percentage of EVO in the samples, irrespectively of the kind
f oil used for blending, was studied. Accordingly, a calibration set
as built on all the 62 training samples and therefore including

 wider variability (four categories of olive oil, EVOO, VO, OO and
omace, from three varieties of olive fruit, arbequina, picual and
ojiblanca and five different vegetable oils sunflower, corn, seed,
esame and soya oil). The calibration set for the quantification of
O was constituted of 62 samples, including mixtures containing
0%, 30%, 50%, 70% and 90% of olive oil in the different vegetable

ils tested. The optimal complexity of the model was assessed by
evenfold cross-validation. Successively, in order to evaluate the
redictive ability of the model on unknown samples, it was  applied
o an external test set composed of 16 samples which were not
0.0107803 0.103153 −0.00644528
0.0381209 0.0529116 0.00185313

employed in the calibration phase. This validation data set was also
baseline corrected and aligned. Validation results were evaluated
in terms of root-mean-squared error of prediction (RMSEP) and R2.

In order to check whether it was  possible to obtain accurate
result with a reduced set of variables, a GA–PLS was  adopted on
the same set of samples. As the number of original variables (i.e.
all the data points in the chromatogram) exceeded 1000, GA was
applied in two  stages in order to avoid overfitting, at first consider-
ing the mean of 5 adjacent points and then on the intervals selected
in the previous stage. Eventually, 18 variables were selected as
Fig. 5. PLS model using all the blends of oils together as well as external validation
(�,  training set; �, validation set). (a) All the chromatographic data were used to
built the model. (b) Variable selection was applied with genetic algorithm.
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Table  3
Calibration and prediction parameters of the PLS model for all the olive oil and vegetable oil blends.

LVs R2 RMSEC RMSECV RMSEP CV Bias PredBias
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[29] R. Leardi, J. Chemometr. 14 (2000) 643.
PLS 2 0.695 0.1562 

GA–PLS 2 0.863 0.1046 

Fig. 5 compares the PLS model without variable reduction (a)
ith the GA–PLS model (b), where the genetic algorithms approach
as used to reduce the big amount of variables. The results obtained

n terms of calibration and prediction abilities for both models are
ummarized in Table 3. As it is shown, reduction in the number of
ariables does not lead to a significant worsening of the modeling
nd predictive ability. Alternatively, on one hand the complexity
f the models in terms of the number of latent variables remains
he same (2 LVs), on the other, the error in modeling and cross-
alidation is significantly lowered (0.1046 and 0.1139, respectively,
ith GAPLS versus 0.1562 and 0.1642 without variable reduction),
hile the RMSE in prediction is only slightly worse (0.1737 versus

.1675).
As a result, variable reduction results in a model having a lower

omplexity in terms of retained experimental variables and com-
arable predictive ability.

In conclusion the high temperature gas chromatographic pro-
osed method and the chemometric class-modeling techniques
uch SIMCA and quantification techniques PLS and GA–PLS with
eature selection, appear to be appropriate tools to verify the per-
entage of olive oil in blends with vegetable oils and could become
n important instrument to verify the labeling compliance and for
uality control in the detection of adulterations. Indeed, the relia-
ility of the proposed qualification model is very high as the kind of
egetable oils used for blending was correctly identified for all sam-
les. Moreover, reliable quantification models were built for each
f the different kinds of blending. Lastly, when the possibility of
uantifying the purity of oil samples irrespectively of the adulterat-

ng vegetable oil, promising results were obtained by applying PLS
on the entire chromatogram or with GA variable selection) to the
hole data set without preliminary classification of the oils. Thus,

his study is especially interesting since olive oils are frequently
dulterated with other vegetable oils.
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